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O1. SUMMARY:

The Rock Island Arsenal Operation Directorate is evolving
into a Flexible Computer Integrated Manufacturing (FCIM)
facility. The FC'M enhances production diversity. But, full
FCIM benefits can only be achieved in facilities capable of
untended or semi-untended operations. However, this capability
creates tool replacement problems. In a one-operator-one-machine
environment the operator is always in the vicinity of the machine
and can receive sensory signals (aural, visual, olfactory, or
tactile) from a worn tool and replace it before the workpiece is
damaged. But, in untended or semi-untended operations the
operator might not be in the vicinity to receive the tool's
signal, resulting in a ruined workpiece.

The Rock Island Arsenal solution to this problem is to
forecast tool life, monitor current tool age (inches drilled,
workpieces completed, tool lip wear) and when current tool age is
within some range of forecasted tool life the operator is
notified. The operator then orders a replacement tool and has it
available for immediate replacement when current age equals
forecasted tool life. This eliminates the possibility of the
tool wearing out and ruining the workpiece and it alleviates the
wait while a tool is brought to the machine from the tool crib.

Implementation of this solution is contingent on the
capability to forecast tool life. Tool life can be forecaot in
millimeters of drill lip wear, linear inLaes of metal drilied, or
workpieces completed. Tool lip wear is the primary indicator.
However, monitoring lip wear requires that either a wear sensor
be incorporated into the machine to dynamically measure lip wear
or the wear has to be manually measured after each workpiece is
completed. The first option increases the cost and complexity of
the machine and the second option decreases productivity. These
monitoring complications can be circumvented by forecasting tool
life in either total inches drilled or workpieces completed, both
of which are easy to monitor. Either variables can: (1) be
forecasted directly, (2) can be derived by forecasting wear and
wear rate (millimeters of wear per inch o. aetal drilled or
millimeters of wear per workpiece) and dividing wear by wear
rate; or (3) can be derived by choosing a constant wear value,
such as the mean wear for all tested drills, and using this value
in conjunction with a forecasted wear rate to forecast tool life.

To develop a forecasting capability Rock Island Arsenal
initiated an experimental program to gather the data necessary
for the development of a forecasting method. The exper'iments are
being conducted by Dr. J. L. Moriarty -- of the Rock Island
Arsenal Science and Engineering Directorate. The set of
three-quarter inch experimental drills consists of: (1) newS drills with a conventional grind (2) reground drills with a
conventional grind (3) reground drills with a four facet grind
(4) reground drills with a helical grind. The experiments are
being conducted within a manufacturing instead of a laboratory
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. environment. Because of this the drills cannot be allowed
to fail and ruin the workpieces (a component of the M1Al tank's
main gun), they must be removed prior to failure. Drill removal
is at the discretion of the machine operator, whose removal
decision is based on sensory signals given off by the drill.

The objective of the current effort is to prove the
feasibility of using neural networks to forecast the life of
three-quarter inch drills used on a component of a MlAl tank's
main gun. However, data was gathered on many tool parameters so
this effort also included a statistical analysis of the data.
This was included primarily to establish an understanding of the
working phenomena that might be useful in the development of a
neural network. The statistical analysis was conducted prior to
the neural network activity and is the subject of a companion
report. The neural network investigation is the subject of this
report.

The feasibility of using one or more neural networks to
forecast tool life was determined by developing neural networks
and testing them for forecast accuracy. Development and test was
carried out using NETS. The NETS is a neural network simulation
computer program developed by National Aeronautics and Space
Agency (NASA). The NETS simulates feed-forward, back-propagation. neural networks.

The first set of neural networks, developed to forecast tool
life, used values of the descriptiv" parameters, listed in Table
1.0, as the independent variables. This was attempted even
though the prior statistical analysis showed that there is little
correlation between these parameters and tool life. When this
approach did not prove fruitful two more independent variables
were added: first workpiece minimum thrust (measured at the ball
screw motor as a percent of maximum thrust the motor is capable
of providing) and first workpiece specific energy (measured at
the spindle motor as horsepower provided by the motor divided by
the quotient of the cubic inches drilled and the feed
rate-hp/(cu.in./min.)). The reason for including these

.Priables was tha& ,t was hypothesized tt the values for the
first piece might be a measure of a drill wear-in. Different
values would account for differences in dr.ll hardness. This
excursion also failed. In another attempt the descriptive
parameter values were combined with a series of dynamic parameter
values, either thrust or specific energy). For these attempts
the average thrust or specific energy value per workpiece for the
first five workpieces was used. This additional information did
not improve the networks forecasting capability. Therefore, the
use of descriptive variables was terminated and attention was
focused on the dynamic variables. The final result of the
experimentation was a decision to use the average thrust per. workpiece for the first 9 workpieces as the independent variable
and total inches drilled per twist drill as the dependent
variable. It was decided to use inches drilled instead of
workpieces completed as the dependent variables in case the

2



. results have a more general application to other drill and
workpiece combinations.

Based on the results of this effort it is concluded that
neural networks can be developed with the capability of
forecasting tool life. However, for this study the amount of
available data was insufficient to both train and test a network.
To achieve sufficient accuracy all of the available data was used
in the training set for the last network that was developed.
However, the test program is continuing and as more data is
generated the neural networks will be updated.

2. DATA:

Characteristic drill and workpiece variables are listed in
Table 1.0 and the relationship between the drill variables and
drill geometry are shown in Figure 1.0. Data was collected on:
the first thirteen variables. In addition, data was collected on:
(1) tool life (inches drilled, workpieces completed, and tool lip
wear), (2) thrust--percent of maximum d.c. current required by
the ball screw motor-- (3) specific energy (hp/(cu.in./min.))
provided by the spindle motor to turn the drill. The dynamic
parameter data, thrust and specifc energy, were collected every
tenth of an inch drilled. For each workpiece 9.3 inches were. drilled: 8 inches for four 2 inch through holes and an
additional 1.3 inches for 2 blind holes. However, since there
was little variation in the data per measurement or average per
hole an average per workpiece (9.3 inches) was used.

The descriptive variable values are shewn in Tables 2.0 -
5.0. The data for 25 new drills (23 manufacturer A and 2
manufacturer B) are shown in Table 2.0. Data for 27 reground
drills (22 A and 5 B) with a conventional grind are presented in
Table 3.0. Data for 18 reground drills with a four faceted grind
are shown in Table 4.n and Table 5.0 is for 2 reground helical
grind drills. The drills in these last two tables are all A*
drills. Regrinding was done by in-house machinists. Tables
6.0-9.0 contain performance data: inches drilled, workpieces,
.otal wear (mill, -ters) and wear rate (millimeters/inch). total
wear was measured after the operator Judged that the tool had
reached the end of its useful life and removed it from the
machine. Measurements were taken directly from photos of the
dull drill points. The constant wear rate was calculated from
total wear and inches drilled.

There are 25 new drills of which 23 are from the same
manufacturer. The analysis of drill variables; point angle,
relief angle, etc. are limited to 22 of these 23 drills unless
otherwise noted.
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TABLE 1.0

CHARACTERISTIC VARIABLES

1. POINT ANGLE
2. RELIEF ANGLE
3. CHISEL EDGE LENGTH
4. WEB THICKNESS
5. DRILL SURFACE TREATED OR UNTREATED
8. CRYOGENIC TREATMENT
7. ION IMPLANTATION SURFACE TREATMENT
8. LOW, MEDIUM, OR HIGH ION FLUX
9. DRILL COATED OR NOT COATED WITH TiN

10. DRILL MANUFACTURERS-2
11. DRILL NEW OR REGROUND
12. TYPE OF GRIND-CONVENTIONAL, HELICAL,

FOUR FACET
13. DRILL STRESS RELIEVED OR NOT
14. DRILL HARDNESS
15. WORKPIECE HARDNESS

TABLE 2.0

NEW DRILL DESCRIPTIVE DATA
CONVENTIONAL POINT GRIND

TEST MPG. PT. RELIEF CEL WEB CEL/WEB CRYO ION FLUX TiN
SEQ. ANGLE ANGLE TRTD TRTD LEVEL CTD

1 A 118 10 .050 .042 1.190 NO NO N/A YES

a A 118 10 .056 .045 1.240 NO NO N/A YES

9 A 118 10 .062 .051 1.220 YES NO N/A YES

10 A 118 10 .068 .056 1.210 YES NO N/A YES

11 B 118 8 .110 .099 1.110 NO NO N/A YES

12 B 118 8 .110 .099 1.110 NO NO N/A YES

13 A 118 10 .050 .042 1.190 YES NO N/A YES

17 A 120 8 .072 .065 1.150 NO NO N/A YES

20 A 122 10 .069 .061 1.130 NO NO N/A YES

26 A 120 11 .088 .076 1.160 NO NO N/l YES

* 27 A 120 10 .02 .053 1.170 NO NO N/A YES

28 A 120 11 .041 .034 1.210 NO NO N/A YES
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. 33 A 120 11 .054 .047 1.150 NO NO N/A YES

38 A 118 10 .082 .054 1.150 NO NO N/A YES

58 A 120 8 .072 .065 1.150 NO YES LOW YES

a1 A 120 6 .059 .051 1.160 NO YES HIGH YES

a2 A 120 4 .063 .055 1.150 NO YES NED YES

83 A 118 4 .068 .054 1.260 NO NO N/A YES

67 A 122 4 .053 .044 1.200 NO NO N/A YES

71 A 124 4 .053 .045 1.180 NO NO N/A YES

79 A 122 10 .072 .062 1.160 NO YES MED YES

80 A 122 8 .071 .063 1.130 NO YES NED YES

81 A 122 8 .072 .062 1.160 NO YES MED YES

83 A 120 8 .075 .065 1.150 NO NO N/A YES.91 A 122 7 .052 .045 1.156 NO NO N/A YES

*NOT USED IN STATISTICAL ANALYSIS AND SOME NEURAL NETWORKS
BECAUSE ANALYSIS WAS COMPLETED BEFORE TES .NG WAS COMPLETED.

MPG a MANUFACTURER
A = GUHRING
B a PTD

PT a POINT
CEL a CHISEL EDGE LENGTH IN INCHES
WEB = WEB THICKNESS IN INCHES

TABLE 3.0

REGROUND DRILLS DESCRIPTIVE DATA
CONVENTIONAL POINT GRIND

TEST MPG. PT. RELIEF CEL WEB CEL/WEB CRYO ION FLUX TiN STRESS

SEQ. ANGLE ANGLE TRTD TRTD LVL CTD RELIEF

4 A 120 7 .143 .113 1.270 NO NO N/A NO NO

5 A 118 9 .0e3 .052 1.210 NO NO N/A NO NO

7 A 118 4 .044 .041 1.070 NO NO N/A NO NO. 8 A 118 7 .075 .069 1.090 NO NO N/A NO NO

16 B lie 7 .062 .053 1.170 NO NO N/A NO NO
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. 18 A 120 8 .059 .053 1.110 NO NO N/A NO NO

22 A 120 8 .082 .038 1.830 NO NO N/A NO NO

24 A 120 5 .053 .045 1.180 NO NO N/A NO NO

29 A 120 10 .042 .037 1.300 NO NO N/A NO NO

30 A 120 10 .048 .040 1.150 NO NO N/A NO NO

31 A 120 12 .042 .030 1.400 NO NO N/A NO NO

32 A 124 12 .048 .037 1.300 NO NO N/A NO NO

34 A 120 10 .035 .031 1.130 NO NO N/A NO NO

38 A 120 11 .071 .050 1.420 NO NO N/A NO NO

39 A 118 12 .053 .048 1.100 NO NO N/A NO NO

45 A 122 14 .044 .025 1.780 NO NO N/A NO NO

50 B 120 9 .044 .035 1.260 NO NO N/A NO NO. 51 B 120 8 .044 .035 1.280 NO NO N/A NO NO

52 A 120 5 .089 .058 1.190 NO NO N/A NO NO

54 A 118 4 .040 .034 1.180 NO NO N/A NO NO

55 A 120 4 .094 .087 1.400 NO NO N/A NO NO

04 A 120 8 .089 .054 1.290 NO NO N/A NO YES

80 A 120 7 .083 .048 1.310 NO NO N/A NO YES

70 B 122 5 .125 .099 1.280 NO NO N/A NO NO

82 A 120 5 .086 .051 1.290 NO NO N/A YES NO

85 B 120 5 .058 .047 1.230 NO NO N/A YES NO

87 A 120 5 .072 .058 1.240 NO NO N/A YES NO

STRESS RELIEF = A NON-HEAT TREATMENT
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TABLE 4.0

REGROUND DRILLS DESCRIPTIVE DATA
FOUR FACETED POINT GRIND

TEST MFG PT. RELIEF CEL WEB CEL/WEB CRYO ION FLUX TiN STRESS

SEQ ANGLE ANGLE TRTD TRTD LVL CTD RELIEF

30 A 118 11 .016 .012 1.330 NO NO N/A NO NO

40 A 120 13 .016 .014 1.140 NO NO N/A NO NO

53 A 120 8 .056 .048 1.170 NO NO N/A NO NO

56 A 123 9 .056 .047 1.190 NO NO N/A NO NO

57 A 118 5 .047 .033 1.420 NO NO N/A NO NO

59 A 118 8 .094 .075 1.250 NO NO N/A NO NO

72 A 122 7 .025 .019 1.320 NO NO N/A NO NO

73 A 122 5 .100 .071 1.410 NO NO N/A NO NO. 74 A 120 5 .069 .052 1.330 NO NO N/A NO NO

75 A 124 5 .019 .014 1.360 NO NO N/A NO NO

77 A 122 6 .022 .015 1.470 NO NO N/A NO NO

84 A 120 5 .016 .013 1.230 NO NO N/A YES NO

86 A 120 5 .010 .008 1.250 NO NO N/A YES NO

88 A 122 e .016 .013 1.230 NO NO N/A YES NO

89* A 120 5 .022 .017 1.290 NO NO N/A NO NO

90* A 120 5 .014 .011 1.270 NO NO N/A NO NO

92* A 124 7 .025 .020 1.250 NO NO N/A NO NO

93* A 124 6 .020 .015 1.330 NO NO N/A NO NO

*NOT USED IN STATISTICAL ANALYSIS AND SOME NEURAL NETWORKS
BECAUSE ANALYSIS WAS COMPLETED BEFORE TESTING WAS COMPLETED.

0
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TABLE 5.0
REGROUND DRILLS DESCRIPTIVE DATA

HELICAL POINT GRIND

TEST MFG PT. RELIEF CEL WEB CEL/WEB CRYO ION FLUX TiN STRESS
SEQ ANGLE ANGLE TRTD TRTD LVL CTD RELIEF

a8 G 122 5 .119 .104 1.140 NO NO X/A NO NO
69 G 122 5 .126 .113 1.120 NO NO N/A NO NO

TABLE 8.0

NEW DRILLS PERFORMANCE DATA
CONVENTIONAL POINT GRIND

TEST TOOL LIFE TOOL LIFE WEAR RATE TOOL LIFE
SEQ INCHES DRILLED TOTAL WEAR MM/INCH WORKPIECES

MM

1 204.6 .31 .00152 22
8 241.8 .34 .00141 28

9 213.9 .27 .00128 23
10 187.4 .21 .00125 18
11 280.4 .28 .00107 28

12 289.7 .28 .00104 29

13 279.0 .31 .0,lII 30

17 446.4 .34 .00078 48

20 390.8 .31 .00079 42
28 204.6 UNK UNK 22
27 280.4 .28 .00108 28

28 241.8 .31 .00128 26
33 288.3 .30 .00104 31

38 306.9 .30 .00098 33
58 474.3 .39 .00082 51
81 344.1 .31 .00090 37

82 195.3 .28 .00143 21

63 204.8 .25 .001.. 22
67 158.1 .31 .00196 17
71 316.2 .28 .00088 34
79 241.8 .28 .00118 26
80 139.5 .22 .00158 15
81 241.8 .32 .00132 28

83 325.5 .25 .00077 35
91 485.0 .31 .00087 50

UNK = TOTAL WEAR WAS NOT MEASURED FOR THIS DRILL

0
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TABLE 7.0

REGROUND DRILLS PERFORMANCE DATA
CONVENTIONAL POINT GRIND

TEST TOOL LIFE TOOL LIFE WEAR RATE TOOL LIFE
SEQ INCHES DRILLED TOTAL WEAR MMINCH WORKPIECES

MM
4 65.1 .16 .00245 7

5 65.1 .13 .00199 7
7 102.1 .16 .00156 11
8 167.4 .28 .00167 18

16 65.1 .16 .00245 7

18 223.2 .37 .00165 24
22 148.8 .27 .00181 16
24 55.8 .17 .00304 6

29 93.0 UNK UNK 10
30 176.7 .39 .00220 19
31 139.5 UNK UNK 15

32 83.7 UNK UNK 9

34 186.0 .33 .00177 20

36 120.9 UNK UNK 13

39 167.4 .25 .00149 18.45 148.8 .28 .00188 16

50 102.3 .23 .00224 11

51 297.6 .39 .00131 32

52 83.7 .23 .00274 9

54 120.9 .28 .00231 13

55 55.8 .15 .00268 6

64 158.1 .31 .00196 17

66 46.5 .18 .00387 5

70 241.8 .23 .00095 26

82 353.4 .39 .00110 38

85 306.9 .28 .00091 33

87 334.8 .34 .00102 36
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TABLE 8.0

REGROUND DRILLS PERFORMANCE DATA
FOUR FACETED POINT GRIND

TEST TOOL LIFE TOOL LIFE WEAR RATE TOOL LIFE
SEQ INCHES DRILLED TOTAL WEAR MM/INCH WCRKPIECES

MM
37 139.5 .17 .00121 15
40 318.2 .44 .00139 34
53 288.3 .39 .00135 31
58 83.7 .23 .00274 9
57 188.0 .39 .00209 20
59 204.8 .39 .00190 22
72 139.5 .23 .001a4 15
73 102.3 .13 .00127 11
74 120.9 .23 .00190 13
75 167.4 .39 .00232 18
77 213.9 .40 .00187 23
84 448.4 .36 .00080 48
88 344.1 .2a .00072 38
88 455.7 .36 .00079 49
89 289.7 .3a .00149 26
90 297.8 .42 .00141 32
92 418.5 .39 .00093 45
93 344.1 .38 .00105 37

TABLE 9.0

REGROUND DRILLS PERFORMANCE DATA
HELICAL POINT GRIND

TEST TOOL LIFE TOOL LIFE WEAR RATE TOOL LIFE
SEQ INCHES DRILLED TOTAL WEAR MM/INCH WORXPIECES

MM
a8 130.2 .31 .00238 14
89 148.8 .34 .00228 18

3. NEURAL NETWORK:

a. Analysis:

(1) Scaling of Data:

NETS requires that the input and output data be scaled
between the theoretical limits of zero and one. Theme are the

* theoretical limits; in practice the limits are .1 and .9. To
scale the data the minimum and maximum values a reselected from
all of the available problem description data (input data) and
all available problem solution data (output data). For this

11



* scaling the minimum and maximum values used in the scaling must
span the minimum and maximum values that could be realized in a
working environment, otherwise it is possible that a problem will
be encountered with values outside the scaling range. A
possible strength of scaling is that all problems are scaled
using the same values thereby creating a relationship between
problems. For this study the minimum and maximum values were
selected from Ghe values for all tested drills, new and reground.

(2) Training Criteria:

The training criteria value is set by the network developer
and it is the maximum error, between the actual answers and the
neural network's generated answers fr• each example in the
training set, that the network developer will accept. When the
network achieves this value, during training, the training phase
is terminated and the test phase can be initiated. The developer
can set this criteria at as low a value as is desired, however,
improvements in network test case accuracy tends to diminish as
the criteria is made smaller, at least for this problem. The
accuracy of the solutions for training examples improves but the
accuracy for unknown test examples not contained in the training
set diminishes. Specific knowledge is gained but generalization
capability is lost.

To determine the impact of training criteria on accuracy,
for this problem, an experiment was conducted in which the
training criteria was set at 14 values. This was done within the
context of one training session. The criteria was first set at a
high value and the network was trained to this value and then it
was tested. Then the training was resumed from the stopping
point but with a new lower criteria.

This was continued for 14 training criteria values .5 -
.008. For each criteria value the network was first trained and
then challenged with the training set (17 out of 20 available
manufacturer *A" drills) and then with the remaining 3 unknown
manufacturer *A" drills. The minimum and maximum errors for each
criteria value for the training set are shown in Figure 2.L, the
minimum and maximum errors for each criteria value for the test
set are shown in Figure 3.0 and the root mean square error for
the training set, test set, and the combined training and test
set are shown in Figure 4.0. As the training criteria value is
reduced the upper and lower bounds on the prediction error for
the training set converge on zero, Figure 2.0. However, for the
test set, Figure 3.0, the upper and lower bounds start to
converge at a criteria value of approximately .26. But, at a
criteria value of .05 the bounds stop converging. This fact is
brought out in Figure v.0 which is a plot of root mean square
error. For the test set this parameter flattens out at approxi-
mately .05. Therefore, for this effort the training criteria wasmot at a value of .05.
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(3) Objective Criteria:

In a working environment there would be limits on the neural
network's decisions. For this investigation it was decided to
establish an acceptable error of plus or minus two workpieces or
plus or minus 18.8 inches. In addition the minimum acceptable
forecast for inches drilled with a new drill was set at 139.5 and
the maximum was set at 474.3. Those are the minimum and maximum
values for the new drills. If a network forecast, a value less
than 139.5, the forecast is. set to 139.5 and if it forecast a
value greater than 474.3 the value is set at 474.3. For reground
conventional grind drills the values are 93.0 and 353.4. For
reground four facet grind the values are 102.3 and 455.7. Table
10.0 shows the training criteria rezults.

TABLE 10.0

TRAINING CRITERIA TRAINING SESSION
NUMBER OF FORECASTS BETWEEN
PLUS AND MINUS TWO WORKPIECES

CRITERIA LEVEL TRAINING SET TEST SET
(17 EXAMPLES) (3 EXAMPLES)

.5 2 0

.4 3 0

.3 4 0

.2 10 0

.1 13 1
.08 12 2
.08 15 2
.05 18 1
.04 18 1
.03 17 1
.02 17 0
.01 17 1
.009 17 1
.008 17 1

(4) Problem Definition:

The dynamic data available for problem definition included
the thrust and specific energy (hp/(cu.in./in)). During drilling
thrust is measured every tenth of an inch. For specific energy
both horsepower and feed rate are measured every tenth of an inch
and these values are used to derive specific energy. The thrust
measurements are taken at the ball screw motor and the horsepower
measurements are taken at the spindle motor. For this effort the
independent variables were average thrust and average specific. energy per workpiece (9.3 drilling inches).

The thrust and specific energy values were derived for each
two inch hole, four holes per workpieco, from the last three
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measurements per hole. Theme four values were then used to
determine a workpiece average. From this data two additional
problem aefinition methods were developed: smoothed and first
differences for both average thrust and average specific energy.

Tool hlf', (inches drilled) forecasting networks were trained
and tested ft % each of the problem definition methods. The
training set consisted of the 15 new drills from manufacturer
"A.* The test set consisted of the remaining 6 ma•aufacturer *A*
examples. Equation (1) is the smoothing equation and equation
(2) is the first difference equation. The smoothing produced
problem definition of nine values and the first difference
produced problem definition of 7 values. The results are shown
in Table 11.0.

(1) T(i) - T(i-1) + 2T(i) + T(i +1) / 4

(2) T(i) = T(i +1) - T(i -1) / 2

TABLE 11.0

PROBLEM DEFINITION
TRAINING SET = 15 EXAMPLES
TEST SET = 6 EXAMPLES

PARAMETER RMSEs RUSE NUMBER OF NUMBER OF
TRAINING TEST TRAINING SET TL.A SET
SET SET FORECASTS FORECASTS

WITHIN TWO WITFIN TWO
WORKPIECES WORXPIECES

THRUST 7.2 117.8 15 1

SMOOTHED 8.32 58.3 15 2
THRUST

IST 18.91 159.8 11 0
DIFFERENCE
THRUST

SPECIF-C 15.0 47.72 13 1
ENERGY

SMOOTHED 12.0 88.80 14 1
SPECIFIC
ENERGY

IST
DIFFERENCE NETWORK WOULD NOT TRAIN
SPECIFIC
ENERGY

• ROOT MEAN SQUARE FORECASTING ERROR
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Thrust and smoothed thrust did very well when challenged
with the training set, however, neither achieved an acceptable
accuracy when challenged with a test set. In fact the best
accuracy when challenged with the test set was specific energy,
however, it did not do as well in learning the training set.
Since none of these approaches fulfilled performance expectations
examples were moved from the test set to the training set. This
was done in order to increase the neural retworks know).edge
concerning the span of possible problems. It was hoped that at
some training set test set combination the accuracy for both sets
would fulfill expectations. This goal was not achieved so it was
decided to include all of the examples in the training set. The
results for this option are shown in Table 12.0.

TABLE 12.0

PROBLEM DEFINITION
TRAINING SET = 21 EXAMPLES

PARAMETER RMSE NUMBER OF
TRAINING TRAINING SET
SET FORECASTS

WITHIN TWO
WORKPIECES

THRUST 8.84 21

SMOOTHED 15.59 19
THRUST

SPECIFIC 8.37 21
ENERGY

SMOOTHED
SPECIFIC 11.83 20
ENERGY

This effort .esulted in the elimir on of both smoothed
approaches from further considerations. This was done for two
reasons: (1) their performance was not equal to the other
approaches, and (2) as the number of examples in the training set
increased the capability of the network to converge to the
training criterium value became more and more difficult. Since
the amount of training examples will increase in the future this
convergence difficulty could become more of a problem.

Although specific energy has a slight accuracy advantage
over thrust, the RMSE values are both within one workpiece.
Because of these results, specific energy was eliminated from. further consideration since it requires a more complicated
sensing system; it requires that both horsepower and feed rate be
monitored; and since it is a quotient, slight changes in either
of these variables can have a sizeable impact.



(5) Required Number of Inputs to Define Problem:

The minimum number of workpieces completed by a new drill
was fifteen. If each piece provides one data point for problem
definition it i- possible to use data from up to fourteen
workpieces for problem definition. To determine the number of
data points that provide the best problem definition neural
networks were trained using from five to fifteen data points per
problem. Five values networks would not converge to the .05
training criteria. For all of these experiments the training set
consisted of 15 examples and the test set consisted of 8
examples. Results are furnished in Table 13.0

TABLE 13.0

NETWORK ACCURACY FORECASTING TOTAL INCHES DRILLED

NUMBER OF AVERAGE RSME RMSE NUMBER OF NUMBER OF
THRUST VALUES TRAINING TEST TRAINING SET TEST SET

SET SET FORECASTS FORECASTS
WITHIN TWO WITHIN TWO
WORKPIECES WORKPIECES

5* N/A N/A N/A N/A
a 15.7 93.7 14 2
7 11.0 83.0 15 1
a 12.2 75.4 14 0
9 7.2 117.8 15 1

10 46.0 88.5 8 1
11 35.0 144.5 8 0
12 39.5 128.5 10 0
13 40.3 151.2 8 1
14 25.9 123.3 11 0
15 27.3 143.7 9 1

* Would not converge.

None of the results for input values of 9 or less is in
every respect the best. However, an attempt was made to improve
network accuracy by adding training examples to the training set.
The additional examples caused the 6 element case to reach a
point were the network would not converge. The 7 element case
would converge but convergence became difficult. Therefore, it
was decided that problem definition would require at least 9
elements.

(8) Number of Training Set Examples:

A rule of thumb lor the number of examples to be included in
the training set is that it should be 5 to 10 times the number of
weights from the input layer to the middle layer. F-r this
effort the input layer has 9 nodes and the middle layer has 4
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. nodes which equates to 38 weights or to a training set require-
ment of between 180 and 380 examples. For this effort the amount
of time required to gather data for one drill can vary between 2
and 8 weeks. Therefore, the amount of time required for &
minimum set is 380 weeks or approximately 7 years. This does not
include the requirements for a test set with which to challenge
the trained network. The current effort does have viable data on
23 new drills; 21 from manufacturer *A' and two from manufacturer
"B.* The impact of the number of examples in the training set
was tested with data from this set, primarily from the 21
manufacturers of 'A' drills. The results are shown in Table
14.0.

TABLE 14.0

IMPACT ON ACCURACY OF NUMBER OF EXAMPLES IN TRAINING SET
AVAILABLE MANUFACTURER *A* DRILLS = 21

NUMBER OF NUMBER OF RMSE RMSE NUMBER OF NUMBER OF
EXAMPLES IN EXAMPLES IN TRAINING TEST TRAINING SET TEST SET
TRAINING TEST SET SET SET FORECASTS FORECASTS
SET WITHIN TWO WITHIN TWO

WORKPIECES WORKPIECES

13 8 12.64 109.84 13 0
14 7 8.98 114.33 14 1
15 8 7.20 117.80 15 1
18 5 8.38 101.2 i8 1
17 4 15.68 89.44 13 0
18 3 10.51 78.20 17 1
19 2 8.80 70.80 18 0
20 1 8.32 85.1 20 0
21 0 8.84 N/A 21 N/A

The neural networks are capable of learning the specific
knowledge contained in the training set but problems occur in
applying this specific knowledge to the general problem s-t.
However, it is possible that a more accurate network can be
trained with something less than 180 examples.

(7) Mixing Drills From Different Manufacturers:

Drills from two manufacturers were used in this effort.
However, the number of drills from each manufacturer was not
equal, only 2 of the new drills were from manufacturer 'B.'
Because of this situation it is possible to test a neural network
capability to transfc- knowledge learned from a set of drills
from one manufacturer to drills from another manufacturer.
Another possibility is to mix the drills into the same training
sot. The set of new drills available for training and testing a
neural network consisted of 21 from manufacturer *A* and two from
manufacturer 'B'. The manufacturer "B" drills are test sequence
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. numbers 11 and 12. It is pointed out that the descriptive
statistics for these two drills are almost identical and in
addition the difference in performance was one workpiece, number
11 completed 28 and number 12 completed 29 workpieces. Because
the available data covers a tool life span of from 139.5 inches
to 474.3 inches the criteria was setup that if a forecast is
greater than 474.3 then it is set at 474.3 and if it is less than
139.5 it is set at this value. Overestimates are shown as
negatives and underestimates as positives. The results are
shown in Table 15.0

TABLE 15.0

IMPACT OF DIFFERENT DRILL MANUFACTURERS

NUMBER OF NUMBER OF RMSE RMSE ERROR ERROR
EXAMPLES IN EXAMPLES IN TRAINING TEST TS 11 TS 12
TRAINING TEST SET SET SET
SET

13* 8* 12.04* 109.64* -213.9 111.6
14 7 8.96 114.33 -213.9 e5.1. 15 a 7.20 117.80 -213.9 120.9
18 5 8.38 101.2 -213.9 18.6
17 4 15.68 89.44 -213.9 55.8
18 3 10.51 78.20 -213.9 55.8
19 2 8.80 70.80 -213.9 130.2
20 1 8.32 65.1 -213.9 55.8
21 0 8.84 N/A -213.9 93.0

TRAINING SET INCLUDE MANUFACTURER *B" DRILLS
22** 1 14.79**u* N/A 18.6 9.3
23*** 0 11.66**** N/A 0 -27.9

* TRAINING SET MANUFACTURER 'A' DRILLS ONLY
** TRAINING SET INCLUDES MANUFACTURER 'B" TS11
*** TRAINING SET INCLUDES MANUFACTURER *B" TS11 AND TS12
,***RMSE IS FOR 21 MANUFACTURER *A* DRILLS

These results indicate that a network trained on drills from
one manufacturer cannot be used to forecast life for drills from
another producer. However, they also indicate, results shown in
entry lines 22 and 23 of the table, that mixing manufacturer in
the training set enables a network to handle both producers.
These conclusions are tentative since only two drills are
available from manufacturer 'B.'
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(8) Alternative Methods for Forcacting Tool Life:

There are alternative methods for calculating tool life,
these are: (1) forecast total wear and constant wear rate and
the quotient yields a forecast of total inches drilled; (2)
determine a standard total wear, mean total wear, forecast the
constant wear rate, again the quotient yields & forecast of total
inches; (3) normalize all experimental inches drilled data to the
average total wear and forecast this normalized value. For this
set of experiments the training set was reduced from 15 to 14
examples. This is due to the fact that one of the examples
contained in the previous training met was missing the data for
lip wear. The normalized values for the second alternative are
shown in Table 16.0 and the results for all alternatives are
shown in Tables 17.0 - 19.0. The first line in each of these
tables contains the results of a direct forecast as a means of
comparing the alternatives.

TABLE 18.0

NORMALIZED TOOL LIFE DATA
NORMALIZED TO A TOTAL WEAR OF .29MM

DRILL TEST ACTUAL NORMALIZED DIFFERENCE
SEQUENCE WORKPIECES WORXPIECES

COMPLETED
80 15 22 +7
87 17 15 -2
10 18 25 +7
62 21 22 +1

1 22 20 -2
9 23 25 +2

63 22 26 +4
28 26 24 -2

6 26 21 -5
79 26 27 +1
81 26 23 -1
27 28 29 +1
13 30 28 -2
33 31 30 -1
38 33 32 -1
71 34 35 +1
61 37 35 -2
83 35 39 +4
20 43 41 -2
17 48 43 -5
91 50 48 -2
58 51 42 -9
ll* 28 29 +1
12* 29 30 +1
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TABLE 17.0

RESULTS ALTERNATIVE FORECASTING METHODS
FIRST ALTERNATIVE-FORECAST BOTH TOTAL WEAR AND CONSTANT WEAR RATE

RMSE RUSE NUMBER OF NUMBER OF
TRAINING TEST TRAINING SET TEST SET
SET SET FORECASTS FORECASTS

WITHIN TWO WITHIN TWO
WORKPIECES WORKPIECES

DIRECT FORECAST 7.20 117.80 15 1

TOTAL WEAR .005MM .08MM N/A N/A
WEAR RATE .000029MM/INCH .000255MM/INCH N/A N/A
TOTAL INCHES 8.96 127.2 14 1

N/A Not Applicable.

TABLE 18.0

RESULTS ALTERNATIVE FORECASTING METHODS
SECOND ALTERNATIVE-FORECAST TOTAL NORMALIZED TOOL LIFE

RMSE RUSE NUMBER OF NUMBER OF
TRAINING TEST TRAINING SET TEST SET
SET SET FORECASTS FORECASTS

WITHIN TWO WITHIN TWO
WORKPIECES WORXPIECES

DIRECT FORECAST 7.20 117.80 15 1

TOTAL INCHES 10.54 92.8 13 1

TABLE 19.0

RESULTS ALTERNATIVE FORECASTING METHODS
THIRD ALTERNATIVE-FORECAST CONSTANT WEAR RATE & USE WITH AVERAGE

TOTAL WEAR

RMSE RMSE NUMBER OF NUMBER OF
TRAINING TEST TRAINING SET TEST SET
SET SET FORECASTS FORECASTS

WITHIN TWO WITHIN TWO

WORKPIECES WORKPIECES. DIRECT FORECAST 7.20 117.80 15 1

TOTAL INCHES 43.2 141.4 7 2
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None of these alternatives is as accurate as forecasting
total inches directly, which had an RMSE for the training set of
7.2 and the test set of 117.8.

Another possible method of forecasting total inches 4 4rectly
is to use input data windows and average the forecast for the
windows to derive a final forecast. This approach was tried for
input values of 8, 7, 8, and 9 thrust values. For example for a
window of six values the first forecast would use values from
workpieces 1 - 8, the second 2 - 7, the third 3 - 8 and the
fourth 4 - 9. However, the 6 element window would only train for
the 1-8 and 2-7 windows. The results are shown in Table 20.0.
Method A in the table is the 0 element window, it used
values for 1-8 and 2-7. Method B is the 7 element window it uses
values for 1-7 and 2-8. Method C is the 7 element window it uses
values for 1-7, 2-8, and 3-9. Method D is also for the 7 element
window and it is based on the average for the first two windows
and then the results of the third window are added to the average
and divided by 2. Method E is for the 8 element window 1-8 and
2-9. The STD is the current standard method forecasting total
inches directly using nine input values.

TABLE 20.0

WINDOWING INPUT DATA

METHOD RMSE RMSE NUMBER OF NUMBER OF
TRAINING TEST TRAINING SET TEST SET
SET SET FORECASTS FORECASTS

WITHIN TWO WITHIN TWO
WORKPIECES WORKPIECES

A 9.e 79.3 15 1
B 9.9 105.8 15 1
C 12.4 77.0 14 1
D 13.8 72.4 13 1
E 10.8 98.3 15 0

STD 7.2 117.8 15 1

With respect to windowing is there one window that results
in a more accurate neural network? The data is shown in Table
21.0 for windows with 8-9 elements.
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TABLE 21.0

EFFECTS ON WINDOW LOCATION

WINDOW ELEMENTS RMSE RMSE NUMBER OF NUMBER OF
SIZE IN RAINING TEST TRAINING SET TEST SET

WINDOW SET SET FORECASTS FORECASTS
WITHIN TWO WITHIN TWO
WORKPIECES WORKPIECES

8 1 - 6 15.74 93.7 14 2
6 2 - 7 11.00 119.3 14 0
7 1 - 7 11.00 83.1 14 1
7 2 - 8 9.90 105.8 15 1
7 3 - 9 12.48 76.9 14 1
8 1 - 8 12.24 75.46 14 0
8 2 - 9 10.74 96.27 15 0
9 1 - 9 7.20 117.8 15 1

These results indicate that a neural network doesn't need
the value from the first workpiece. But it does need the one
from the second. It also shows that starting the window at the
third workpiece is not a good idea. It is possible that the. first value represents a wear in period or some other phenomena
and that this phenomena is over by the second workpiece.

(9) Training Set Patterns:

Within the tool lifetime data there are patterns; 3 tools
drilled 204.6 inches, 4 tools drilled 241.8 inches, and 7 tools
had a total wear of .31mm. The question is; can these patterns
be employed to assign examples to the training set and the test
set and thereby improve the capability of the network? Table
22.0 contains the data for the 3 tool pattern, Table 23.0
contains the data for the 4 tool pattern and Table 24.0 contains
the data for the 7 tool pattern. With respect to this last
table, data for 6 tools is shown because one tool is missing
thrust values.
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TABLE 22.0

PATTERN IMPACT ON NETWORK ACCURACY

NUMBER OF NUMBER OF RMSE RUSE ERROR ERROR ERROR
TRAINING SET TEST SET TRAINING TEST FOR FOR FOR
EXAMPLES EXAMPLES SET SET DRILL DRILL DRILL

1 28 63
13 8 12.84 109.6 204.8 9.3* -46.5
14 7 8.98 114.3 -223.2 9.3* 55.8
15 8 7.2 117.8 0* 0* -9.3
18 5 8.4 101.2 9.3* -9.3* 85.1
17 4 15.68 89.4 9.3* 9.3* 65.1
18 3 10.51 78.2 9.3* 0* 0*

* CONTAINED IN TRAINING SET
NEGATIVE VALUE IS AN OVERESTIMATE
POSITIVE VALUE IS AN UNDERESTIMATE

TABLE 23.0

PATTERN IMPACT ON NETWORK ACCURACY

S NUMBER OF NUMBER OF RMSE RMSE ERROR ERROR ERROR ERROR
TRAINING SET TEST SET TRAINING TEST FOR FOR FOR FOR
EXAMPLES EXAMPLES SET SET DRILL DRILL DRILL DRILL

a 28 79 81
13 8 12.84 109.8 74.4 46.5 18.6* -130.2
14 7 8.98 114.3 74.4 85.1 0* -178.7
15 8 7.2 117.8 -37.2 102.3 0* -188.0
18 5 8.4 101.2 48.5 -18.8 18.8* -9.3*
17 4 15.88 89.4 85.1 -28.2 9.3* 18.8*
18 3 10.51 78.2 -37.2 0 9.3* -27.9*
19 2 8.8 70.8 93.0 -37.2 9.3* 0*
20 1 8.32 85.1 0* -85.1 18.8* -18.8*
21 0 8.84 9.3* -9.3* 18.6* 0* 0*

* CONTAINED IN TRAINING SET
NEGATIVE VALUE IS AN OVERESTIMATE
POSITIVE VALUE IS AN UNDERESTIMATE

26



TABLE 24.0

PATTERN IMPACT ON NETWORK ACCURACY

NUMBER OF NUMBER OF RMSE RMSE ERROR ERROR ERROR ERROR ERROR ERROR
TRNG SET TEST SET TRNG TEST FOR FOR FOR FOR FOR FOR
EXAMPLES EXAMPLES SET SET DRILL DRILL DRILL DRILL DRILL DRILL

1 13 20 28 87 91

13 8 12.84 109.8 -204.6 0* 18.68 48.5 -120.9 18.8o
14 7 8.98 114.3 -223.2 9.3* -18.6* 85.1 0* -9.3'
15 8 7.2 117.8 0* 9.3* -18.6* 102.3 0* 9.3'
18 5 8.4 101.2 3* 0* 9.3* -18.8 0* 0'
17 4 15.88 89.4 3' 27.9* 27.9* -37.2 9.3* -9.3'
18 3 10.51 78.2 U.3* -9.3* 9.3* 0 -9.3* -9.3o
19 2 8.8 70.8 9.3* 0* 9.3' -37.2 0W 0O
20 1 8.32 85.1 0* 9.3* 0* -65.1 -9.3* -9.30
21 0 8.84 9.3' 9.3* 9.3* -9.3* 9.3* o0

* * CONTAINED IN TRAINING SET
NEGATIVE VALUE IS AN OVERESTIMATE
POSITIVE VALUE IS AN UNDERESTIMATE

The data in these three tables shows that selecting training
examples based on some common criteria is not sufficient to improve the
accuracy of the network with respect to other drills within the same
pattern. The data does show that there is an interaction between these
pattern sets and examples that do not belong to the set. This is shown
by a decrease in some of the errors when none member examples are added
to the training set. The results also indicate that total inches
drilled is a better criteria than total wear.

O
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(10) New Drills Vs. Reground Drills:
Within the total data set there are subsets, these are

defined in Table 25.0

TABLE 25.0

DATA SUBSET DEFINITION

DRILL DRILL DRILL TITANIUM STRESS
CONDITION MFGR GRIND NITRIDE RELIEVED

COATING

NEW A CONV* Y Y
NEW B CONV Y Y
REGROUND A CONV Y N
REGROUND A CONV N Y
REGROUND A CONV N N
REGROUND B CONV Y N
REGROUND B CONV N N
REGROUND A FOURw Y N
REGROUND A FOUR N N
REGROUND A HELI* N N
CONV = CONVENTIONAL GRIND
FOUR - FOUR FACET GRIND
HELI = HELICAL GRIND

It iS possible that one neural network would have the
capability to handle all of these different possibilities. The
new drill work has shown that a network can handle variations in
certain parameters (not different manufacturers) so the question
becomes can a neural network handle new and reground drills. The
results of this effort are shown in Table 28.0.

0
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0 TABLE 26.0

IMPACT OF NEW AND REGROUND DRILLS ON ACCURACY

TRAINING SET TEST SET RMSE RMSE RMSE RMSE RUSE RUSE
TRNG *A' "B" 'A + B" 'A' 'A'
SET CONV CONV CONV FOUR NEW

"A* NEW REGROUND 19.5 92.5 132.2 102.7 203.4 19.5
DRILLS CONV AND

FOUR

"A + B" 'A* 24.0 22.2 29.4 24.0 113.1 189.8
REGROUND NEW AND
CONV REGROUND

FOUR

"A' "A' NEW 13.8 124.0 29.0 110.2 13.8 132.2
FOUR AND

"A + B
REGROUND
CONV

In addition to these training sets several others were
tried; new drills and conventional grind reground drills, new
drills and four facet grind reground drills, conventional and
four facet reground drills. These sets failed in training viable
neural networks. During training with these sets the training
criteria of .05 could not be achieved. in fact the best that
could be achieved was .360.

The results shown in Table 28.0 indicate that there is a
difference between new and reground drills, even if the grind is
identical and both sets of drills are from the same manufacturer.
The results for the new drill neural network indicate that
regrinding has not removed the difference between manufacturer
"A* and manufacturer "B" conventional grind drills as shown by
RMSE values of 92.5 for the 'A* drills and 132.2 for the "B"
drills. The results indicate that the four facet regrind has
completely changed the drills, the RMSE for the four facet case
is almost twice the value for the conventional grind case, 102.7
to 203.4.

(11) Regrinding and Recoating:

A few of the reground drills were also recoated with
Titanium Nitride; two manufacturer "A* conventional grind, one
manufacturer 'B" conventional grind and three manufacturer "A'
four facet grind. The one of interest of course is the
manufacturer *A* conventional grind because this is as close to
new as can be achieved. The question is did the network trained
on new drills consider these to be new drills. The results are
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. mixed. For one drill the actual error was zero and for the other
drill it was an underestimate of 177.4 inches. For the
manufacturer "B" conventional reground drill the error was an
underestimate of 111.8. This could be further evidence that the
reground drills do not perform in the same manner as new drills.

4. DISCUSSION:

Three sets of experimental data were available; new drills-
conventional grind-, reground-conventional grind drills-, and
reground-four facet grind drills, but, most of the investigations
used the new drill data because more new drill data was available
and the regrinding operation added another variable.

Within the new drills category some of the drills in addition
to being coated with Titanium Nitride were also given additional
treatment namely; cryogenic treatment (-300 F) or ion
implantation. Therefore, within this category the drills could
be further divided into untreated, cryogenically treated or ion
implantation.

The neural networks for new and reground drills have nine
input nodes, four middle layer nodes and one output node. All of. the networks have been trained on problems defined by the average
thrust values per workpiece and the output is in total inches
drilled. The thrust values are measurad as a percentage of the
total output that the motor is capable _f supplying. Each
workpiece has four two inches holes and two additional blind
holes that equal an additional 1.9 inches or each workpiece is
equivalent to 9.3 inches of metal drilled.

For new and reground drills equation (1) scales the thrust
values so that they are between .1 and .9.

(1) SCALED ((ACTUAL THRUST - MINIMUM THRUST).8 / RAICEJ

+ .1

= ((ACTUAL THRUST - .10G).8/.075) + .1

For new drill equation (2) converts the scaled output values
to total inches, equation (3) is for reground conventional point
drills, and equation (4) is for reground four facet drills.

(2) ACTUAL = MINIMUM ACTUAL VALUE + (SCALED FORECAST
-. I)RANGE/.8

= 139.5 + (SCALED FORECAST - .1)334.8/.8

(3) = 93 + (SCALED FORECAST - .1)280.4/.8

(4) = 102.3 + (SCALED FORECAST - .1)353.4/.8
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0 The following conditions also were applied to the forecast
for new drills the conditions are: if the forecast is less than
139.4 inches set the forecast to 139.4; if the forecast is
greater than 474.3 inches set the forecast to 474.3 inches. For
reground conventional grind drills the conditions are: if the
forecast is less than 93 inches set the forecast at 93 inches; if
the forecast is greater than 353.4 inches set the forecast at
353.4 inches. For reground four facet grind drills the
conditions: if the forecast is less than 102.3 inches set the
forecast at 102.3; if the forecast is greater than 455.7 inches
set the forecast at 455.7.

The first attempts at developing a neural network with the
capability to forecast tool life centered around using static
parameter values to define the problem; point angle, relief
angle, chisel edge length, web thickness, ratio. Predicting
performance based on these parameters would have made the problem
trivial. However, the network did not perform. The values for
the first workpiece for specific energy thrust were added to
further define the problem. Then the thrust or specific energy
values for the first five workpieces were added to the static
variables. These attempts proved fruitless. The use of static
variables was discontinued and focus was placed on using thrust
and specific energy and variations such as smoothed values and

* first difference values. The final decision was to use average
thrustvalues for the first 9 workpieces as the independent
variables. But even here the network did not achieve the goal of
a forecast wit-..n plus or minus two w, kpieces when challenged
with unknown drill data. However, this might be the result of
not enough training examples, only 21 drills from one
manufacturer and 2 drills from another manufacturer were
available for the new drill set. However, the networks could
learn to differentiate the drills in the training set even though
the drills were treated and untreated.

The difference in manufacturers was tested. This wa"
accomplished by training the network with drills from one
manufacturer and testing it with drills from the other. In most
cases the forecasting error was very large. However, when the
drills were mixed within the training set and the network was
challenged with the training set the addition of the alien drills
did not impact the accuracy of the network with respect to the
other drills. It seems that the network was able to accommodate
the two different manufacturers.

A few of the reground drills were also recoated with Titanium
Nitride, it was postulated that this would allow them to perform
as a new drill. This was tested by training a network with
new drills and then challenging the trained network with these
reground recoated drills. The forecasting error was equivalent

* to those drills that were just reground. The regrinding
recoating process does no#. result in a new drill. It results in a
better performing reground drill. A network trained on new
drills cannot be used to forecast reground drills and networks
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Strained on reground drills cannot be used to forecast new drills.
For reground drills and probably new drills
the grind has to be the same. A network trained on conventional
grind drills cannot be used to forecast four facet drills and
vice-versa.

Even though the network did not achieve the goal of
forecasting unknown challenge drills within plus or minus two
workpieces, the forecasting error decreased as the number of
examples in the training set increased. This indicates that the
number of training set examples is not sufficient.

5. CONCLUSIONS:

a. Utilization of neural networ.ks to forecast twist drill
lifetime is feasible.

b. As the investigations into different manufacturers
indicate the forecasting capability might not be applicable to
the general situation. The forecasting capability would be
limited to a specific drill workpiece combination. If the drill
or workpiece is changed the network might have to be retrained.

c. The best improver of drill performance is to coat the. drills with Titanium Nitride.

d. Average thrust values are the chosen method for -roblem
definition.

e. Smoothing average thrust values or specific energy values
increases the difficulty of training a neural network.

f. First difference values loses more of the information and
increases the difficulty of training a network.

8. RZCO ý NDATIONS:

a. Continue the effort to develop a neural network capable
of forecasting tool life. Incorporating new data being generated
by the experimental program.

b. Determine if the forecasting capability is only
applicable to this drill workpiece combination or can it be
generalized to other drills, workpieces. drill workpiece
combinations.

0
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